Epileptogenicity biomarkers and effective connectivity in stereo-EEG

*Andrei Barborica¹, Ioana Mindruta², Cristian Donos³, Mihai Dragos Maliia², Irina Popa², Anca Arbune²

 ¹ Physics Department, Bucharest University, Bucharest, Romania
 ² University Emergency Hospital, Epilepsy Unit, Bucharest, Romania
 ³ University of Texas Health Science Center at Houston, Department of Neurosurgery, Houston, USA

Disclosures

VP, Chief Techological Officer, FHC Inc, Bowdoin, Maine, USA

Outline

Signal analysis methods developed and used in Bucharest for analysis of SEEG recordings:

- Epileptogenicity biomarkers / mapping
- Functional connectivity
- Spontaneous activity
 - Inter-icial: spikes, HFO
 - Ictal: epileptogenicity indexes
- Responses to intracranial stimulation
 - Low frequency SPES (f<0.1 Hz)
 - Biomarkers: HFO, Delayed Responses
 - Effective connectivity using CCEP brain connectome
 - High frequency (f=50 Hz)
 - Functional connectivity during stimulation

Clinical value of the signal analysis methods:

S56 Thu 9:40 AM, Ioana Mindruta

 ADDED VALUE OF EEG SIGNAL ANALYSIS IN PRESURGICAL EVALUATION FOR DRUG-RESISTANT EPILEPSY

— O154 Fri 14:15, Mihai Dragos Maliia

 DEACTIVATION OF DEFAULT MODE NETWORK IN FOCAL EPILEPSY, INFERRED BY SINGLE PULSE ELECTRICAL STIMULATION

- 0157 Fri 14:45, Irina Popa

 MAPPING THE FUNCTION AND CONNECTIVITY OF THE CINGULATE GYRUS USING STEREO-ENCEPHALOGRAPHY (SEEG)

- P241, Fri 11:45, Anca Adriana Arbune
 - INSULA CONNECTIVITY DURING WAKEFULNESS AND SLEEP STUDIED THROUGH SINGLE PULSE ELECTRICAL STIMULATION DURING SEEG RECORDINGS

Instantaneous weighted power ratio

- Both ictal LVFA associated with flattening (Spanedda et al., Epilepsia 1997) and baseline shifts (Ikeda et al., Epilepsia 1996) are considered to be robust biomarkers of epileptogenicity (Perucca, Dubeau and Gotman, Brain 2014).
- We therefore combine LVFA ($\gamma + HFO$) and slow (<0.5Hz) activity in a weighted power ratio:

$$IWPR = \frac{w \cdot (P_{\gamma} + P_{HFO}) + P_{Slow}}{w \cdot (P_{\gamma} + P_{HFO}) + P_{Slow} + (P_{\alpha} + P_{\beta})}, \qquad 0 \le IWPR \le 1$$

where w = weighting factor (typ. 10) for the DC shifts (DC shifts contain much larger energy than LVFA, obscuring LVFA)

- We calculate the instantaneous IWPR (IWPR) using Hilbert Transform
 - Returns "analytic signal" having modulus proportional to the signal envelope:

$$\left|\mathbf{x}_{a}(t)\right| = \sqrt{\mathbf{x}^{2}(t) + \mathbf{H}^{2}(\mathbf{x})(t)}$$

- We apply HT to calculate instantaneous aEEG over several frequency bands of interest.
- We calculate an instantaneous signal power ratio (IWPR) for all contacts and perform a 3D topographic animated representation overlapped with patient's anatomy.

Instantaneous weighted power ratio (IWPR)

 P_{γ} , P_{HFO} , P_{slow} , P_{α} , P_{β} – power in respective freq. bands w – a weight of the high-frequency range vs baseline shift power, (w~10)

Topographic mapping of IWER Clinical Onset

Epileptogenicity biomarkers: HFO and DR

Clinical Neurophysiology 128 (2017) 1043-1052

Contents lists available at ScienceDirect

Clinical Neurophysiology

journal homepage: www.elsevier.com/locate/clinph

Co-occurrence of high-frequency oscillations and delayed responses evoked by intracranial electrical stimulation in stereo-EEG studies

^a Physics Department, University of Bucharest, Str. Atomistilor 405, Magurele, Jud. Ilfov CP MG-11, Bucharest-Magurele, Romania

^bEpilepsy Center, University Hospital of Freiburg, Breisacher Str. 64, Freiburg, Germany

^cNeurology Department, University Emergency Hospital, Splaiul Independentei 169, Bucharest, Romania

^dNeurology Department, Carol Davila University of Medicine and Pharmacy, Blvd. Eroii Sanitari 8, Bucharest, Romania

^e Department of Neurosurgery, Bagdasar-Arseni Emergency Hospital, Şos. Berceni 12, Bucharest, Romania

^fFHC Inc, 1201 Main St, Bowdoin, ME, USA

Epileptogenicity biomarkers

- HFO and DR evoked by inter-ictal single-pulse intracranial electrical stimulation in 16 patients
- Sensitivity, Specificity, Accuracy, Positive Prediction Value for identifying Seizure Onset Zone (SOZ)

Responses to single pulse electrical stimulation identify epileptogenesis in the human brain *in vivo*

A. Valentín,¹ M. Anderson,¹ G. Alarcón,^{1,2} J. J. García Seoane,² R. Selway,¹ C. D. Binnie¹ and C. E. Polkey¹

High-Frequency Oscillations and Delayed Responses evoked by SPES

Donos C, Mîndruță I, Malîia MD, Rașină A, Ciurea J, Barborica A (2016). Clin Neurophysiol 2017, doi:10.1016/j.clinph.2016.11.028.

Time-frequency analysis using signal-adapted wavelets

Combine information with good time localization and frequency resolution, obtained by varying the Q-factor of the mother wavelet

Repetitive inter-ictal spikes + HFO on SEEG macrocontacts

Morlet

Multi-Q MinIP

Patient Population (n=16)

Patient	Sex	Age	Lateralization	Number of Electrodes	SOZ	Resection	Pathology	Surgical Outcome	Follow up (months)
1	F	40	L	11	Prefrontal Lateral (SFG, MFG)	Lesionectomy	Type II B cortical dysplasia	Engel I A	23
2	F	35	R	12	Amygdala	Temporal lobectomy	Type III cortical dysplasia (Temporal Sclerosis + II A)	Engel IA	10
3	F	24	R	15	Precentral Gyrus (MFG, IFG), Rolandic Operculum	Lesionectomy	omy Type II A cortical dysplasia		21
4	М	24	R	14	Occipital, Temporal Basal	Occipital lobectomy, Temporal basal cortictectomy	Type I cortical dysplasia	Engel III B	23
5	F	25	R	10	Temporal Pole	Temporal lobectomy	Type I cortical dysplasia Engel I [25
6	F	46	R	9	Superior Temporal Gyrus	Temporal lateral cortictectomy	Type II B cortical dysplasia	Engel IV C	20
7	М	33	L	17	Prefrontal-Premotor Mesial	Frontal mesial cortictectomy	Type II A cortical dysplasia	Engel I A	17
8	F	11	R	9	Prefrontal-Premotor Mesio- Lateral (SFG)	Frontal mesio-lateral cortictectomy	Type II A cortical dysplasia	Engel I A	21
9	М	28	R	17	Hippocampus	Temporal lobectomy	oral lobectomy Type I cortical dysplasia		19
10	М	39	L	16	Lingual Gyrus	Occipital basal cortictectomy Polimycrogyria		Engel I A	34
11	М	47	L	11	Middle Temporal Gyrus	Lesionectomy	DNET	Engel II B	28
12	F	37	L	13	Amygdala, Enthorinal, Hippocampus, Temporal Pole	Temporal lobectomy	Hippocampal sclerosis	Engel I A	15
13	F	36	R	15	Parieto-Temporal Operculum, Posterior Insula	Lesionectomy Type II B cortical dysplasia		Engel I A	15
14	F	42	R	14	Amygdala, Temporal Pole	Temporal lobectomy	Type I cortical dysplasia	Engel I A	15
15	М	30	R	15	Prefrontal Lateral (IFG)	RFTC	Not available (coagulated)	Engel I A	6
16	М	42	L	14	Amygdala, Enthorinal, Hippocampus	Partial temporal lobectomy	Type II A cortical dysplasia	Engel I A	9

A total of 212 electrodes (mean 13.3) electrodes containing 2612 (mean 163.3) contacts were implanted; 64 channels per patient have been recorded (total 1024).

Biomarker Metrics

 $Sens_{C} = \frac{NC_{SOZ}^{POS}}{NC_{SOZ}}$ $Spec_{C} = \frac{NC_{NSOZ}^{NEG}}{NC_{NSOZ}}$ $Acc_{C} = \frac{NC_{SOZ}^{POS} + NC_{NSOZ}^{NEG}}{NC}$ $PPV_{C} = \frac{NC_{SOZ}^{POS}}{NC_{SOZ}^{POS} + NC_{NSOZ}^{POS}}$

Similarity (Jaccard):

$$J(DR, HFO) = \frac{|DR \cap HFO|}{|DR \cup HFO|} = \frac{NC_{DR \wedge HFO}}{NC_{DR \vee HFO}}$$
$$J(DR, HFO) = \frac{\sum_{i=1}^{NC} \min(NR_i^{DR}, NR_i^{HFO})}{\sum_{i=1}^{NC} \max(NR_i^{DR}, NR_i^{HFO})}$$

By Number of Contacts **By** Number of responses

$$POS_{i} = NR_{i}/\max(NR_{i}) \qquad NEG_{i} = 1 - NR_{i}/\max(NR_{i})$$

$$TP = \frac{1}{\max(NR_{i})} \sum_{i=1}^{NC_{SOZ}} NR_{i}^{SOZ} \qquad FP = \frac{1}{\max(NR_{i})} \sum_{i=1}^{NC_{NSOZ}} NR_{i}^{NSOZ}$$

$$FN = \sum_{i=1}^{NC_{SOZ}} \left(1 - \frac{NR_{i}^{SOZ}}{\max(NR_{i})}\right) \qquad TN = \sum_{i=1}^{NC_{NSOZ}} \left(1 - \frac{NR_{i}^{NSOZ}}{\max(NR_{i})}\right)$$

$$Sens_{R} = \frac{TP}{TP + FN} = \frac{1}{NC_{SOZ}} \sum_{i=1}^{NC_{SOZ}} \left(\frac{NR_{i}^{SOZ}}{\max(NR_{i})}\right)$$

$$Spec_{R} = \frac{TN}{FP + TN} = \frac{1}{NC_{SOZ}} \sum_{i=1}^{NC_{SOZ}} \left(1 - \frac{NR_{i}^{NSOZ}}{\max(NR_{i})}\right)$$

$$Acc_{R} = \frac{TP + TN}{TP + TN + FP + FN} = \frac{1}{NC} \left(\sum_{i=1}^{NC_{SOZ}} \left(\frac{NR_{i}^{SOZ}}{\max(NR_{i})}\right) + \sum_{i=1}^{NC_{SOZ}} \left(1 - \frac{NR_{i}^{NSOZ}}{\max(NR_{i})}\right)\right)$$

$$PPV_{R} = \frac{TP}{TP + FP} = \frac{\sum_{i=1}^{NC_{SOZ}} NR_{i}^{SOZ}}{\sum_{i=1}^{NC} NR_{i}}$$

$$NPV_{R} = \frac{TN}{TN + FN} = \frac{\sum_{i=1}^{NC} \left(1 - \frac{NR_{i}^{NSOZ}}{\max(NR_{i})}\right)}{\sum_{i=1}^{NC} \left(1 - \frac{NR_{i}^{NSOZ}}{\max(NR_{i})}\right)}$$

Inbound Response Maps

– DR

Inbound

- HFO
- Combinations "or", "and":
 - DR \vee HFO
 - DR \wedge HFO
- Maps:
 - Number of responses
 DR, HFO, DR AHFO,
 DR HFO

DR 0 HFO С DR V HFO d DR A HFO

Patient #9: $Sens_{C}^{DR} = 50\%$, $Spec_{C}^{DR} = 61.7\%$, $Sens_{C}^{HFO} = 50\%$, $Spec_{C}^{HFO} = 56.7\%$, $Sens_{C}^{DR\vee HFO} = 75\%$, $Spec_{C}^{DR\vee HFO} = 36.7\%$, $Sens_{C}^{DR\wedge HFO} = 25\%$, $Spec_{C}^{DR\wedge HFO} = 81.7\%$,

Outbound Response Maps

Patient #9: $Sens_{C}^{DR} = 100\%$, $Spec_{C}^{DR} = 70.9\%$, $Sens_{C}^{HFO} = 50\%$, $Spec_{C}^{HFO} = 29.1\%$, $Sens_{C}^{DR\vee HFO} = 100\%$, $Spec_{C}^{DR\vee HFO} 25.5\%$, $Sens_{C}^{DR\wedge HFO} = 50\%$, $Spec_{C}^{DR\wedge HFO} = 74.5\%$,

- Biomarkers:
 - DR

Outbound

- HFO
- Combinations "or", "and":
 - DR \vee HFO
 - DR \land HFO
- Maps:
 - Number of responses
 DR, HFO, DR AHFO,
 DR HFO

Biomarker Metrics

Conclusions (epileptogenicity biomarkers)

- Topographic representation of ER/DR/HFO is a valuable aid for the epileptologist
- Analyzing biomarker metrics of SOZ localization shows no clear winner between DRs and HFOs, taken separately
 - HFO slightly higher sensitivity and specificity for inbound "by contact"
 - DR higher specificity for outbound "by contact"
 - Sensitivity of biomarkers was larger "by contact" than "by response"
 - Combinations of responses:
 - "and" improves specificity and accuracy, but degrades sensitivity
 - "or" improves sensitivity
 - PPV and NPV are little affected
 - Jaccard similarity between responses: 25% (inbound), 29% (outbound) chances for pathological DR and HFO sharing same generation mechanism are small

Outline

- Signal analysis methods developed and used in Bucharest for analysis of SEEG recordings:
 - Epileptogenicity biomarkers / mapping
 - Functional connectivity
- Spontaneous activity
 - Ictal: epileptogenicity indexes
- Responses to intracranial stimulation
 - Low frequency SPES (f<0.1 Hz)
 - Biomarkers: HFO, Delayed Responses
 - Effective connectivity using CCEP brain connectome
 - High frequency (f=50 Hz)
 - Functional connectivity during stimulation

Human Connectomics

- Effective connectivity causal interactions between different brain regions: "the influence one neural system exerts over another" (Friston, 1994).
- Probed using intracranial electrical stimulation

A connectomics approach combining structural and effective connectivity assessed by intracranial electrical stimulation

Cristian Donos ^a, Mihai Dragoş Mălîia ^b, Ioana Mîndruță ^{b,c}, Irina Popa ^b, Mirela Ene ^a, Bogdan Bălănescu ^{a,d}, Ana Ciurea ^{a,d,e}, Andrei Barborica ^{a,f,*}

^a Physics Department, University of Bucharest, Bucharest, Romania

- ^b Neurology Department, University Emergency Hospital, Bucharest, Romania
- ^c Neurology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania

^d Neurosurgery Department, Bagdasar-Arseni Emergency Hospital, Bucharest, Romania

^e Neurology and Neurovascular Diseases National Institute, Bucharest, Romania ^f FHC Inc, Bowdoin ME, USA

Spatial Sampling of the Brain

Calculating Connectivity

Patient-level effective connectivity $R_{A \rightarrow B}^{k}$ between A and B based on early responses to SPES, in patient k:

$$R_{A \to B}^{k} = \frac{\sum_{i=1}^{N_{A}^{k}} \sum_{j=1}^{N_{B}^{k}} R_{Ai \to Bj}^{k}}{N_{R_{AB}}^{k}}$$

Group-level effective connectivity $R_{A \rightarrow B}$ obtained by averaging patient-level connectivity, normalized with the third quartile (*Q3*) of the responses:

$$R_{A \to B} = \frac{\sum_{k=1}^{N} \frac{R_{AB}^{\kappa}}{Q3^{k}}}{N}$$

Directionality factor:

$$DF_{A\leftrightarrow B} = \left| \frac{R_{A\rightarrow B} - R_{B\rightarrow A}}{R_{A\rightarrow B} + R_{B\rightarrow A}} \right|$$

Calculating Connectivity

Effective connectivity was mapped on 97167 fibers connecting each structure, based on the CMU-60 atlas (Yeh and Tseng, 2011):

Effective number of fibres:

$$EF_{A \to B} = \frac{R_{A \to B}}{R_{A \to B} + R_{B \to A}} \cdot F_{AB}$$

Yeh F-C, Tseng W-YI (2011). NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58(1):91-99.

Physiological Connectome

Obtained by including only responses in non-pathological structures, averaged across patients (n=24)

After Donos, Maliia, Mindruta, Popa, Ene, Balanescu, Ciurea, Barborica, Neuroimage 2016

PSEC - Single StructureRight Anterior Cingulate – ACCInbound/Outbound

Functional Connectome Single Structure

Right Anterior Cingulate - ACC, 32 patients See Irina Popa 0157 Thu 13:45

Correlation matrix between structural and effective connectome

Donos C, Mălîia MD, Mîndruță I, Popa I, Ene M, Bălănescu B, Ciurea A, Barborica A (2016). Neuroimage 132:344-358.

Network Measures

- Characterization of network topology
- Indegree/outdegree: number of links connected to each node
- Directed Clustering coefficient:

$$C^{\rightarrow} = \frac{1}{n} \sum_{i \in \mathbb{N}} \frac{t_i^{\rightarrow}}{\left(k_i^{\text{out}} + k_i^{\text{in}}\right) \left(k_i^{\text{out}} + k_i^{\text{in}} - 1\right) - 2\sum_{i \in \mathbb{N}} a_{ij} a_{ij}}$$

- Directionality index:
 outdegree/indegree
 Flow index:
 - outdegree-indegree

Conclusions (connectome)

- Responses to SPES can be used to calculate the effective brain connectivity.
- Effective connectivity correlates with the number of fibers connecting structures
- Mapping the effective connectivity on the number of fibers provides a structural-effective connectome of the brain
- Selection of non-pathologic structures allows to build a whole-brain physiological structural-effective connectome, that can be used as a reference connectivity atlas.

Outline

Signal analysis methods developed and used in Bucharest for analysis of SEEG recordings:

- Epileptogenicity biomarkers / mapping
- Functional connectivity
- Spontaneous activity
 - Ictal: epileptogenicity indexes
- Responses to intracranial stimulation
 - Low frequency SPES (f<0.1 Hz)
 - Biomarkers: HFO, Delayed Responses
 - Effective connectivity using CCEP brain connectome
 - High frequency (f=50 Hz)
 - Functional connectivity during stimulation

Functional Connectivity during high-frequency stimulation

- Connectivity associated with clinical symptoms
- Subtle modification of the highfrequency 50 Hz stimulation protocol allows recovery of the responses during stimulation
- Allows evidencing recruitment of networks related to clinical effects

50 Hz Signal Analysis

 Alternating polarity of pulses, combined with nonlinear tissue response results in non-overlapping spectral content for the responses for the artifact - fully separable components

F

Modulation theorem:

$$\{\cos(\omega_0 t) \cdot f(t)\} = \frac{1}{2} [F(\omega - \omega_0) + F(\omega + \omega_0)]$$

50 Hz Signal Analysis

Raw Signal

Processed Signal

Stimulation vs Baseline response: $R = R_S - R_B$

50 Hz Signal Analysis Response charts / diagrams

50 Hz Signal Analysis

Selective network recruitment associated with a clinical effect

Activation factor: $AF = R^{SYM} / I^{SYM} - R^{NS} / I^{NS}$

Conclusions (functional stimulation)

By modulating the properties of the stimulation waveforms, in conjunction with the nonlinear response of the tissue to electrical stimulation, we were able to recover the physiological responses during the course of the stimulation train.

This method allowed us to evidence the activation of specific pathways in the brain when a clinical symptom is evoked by electrical stimulation.

Acknowledgements

Bucharest, Romania

- Biophysics
 - Andrei Barborica
 - Cristian Donos
 - Constantin Pistol
- Epileptology
 - Ioana Mindruta
 - Mihai Maliia
 - Irina Popa
 - Anca Arbune
 - Andrei Daneasa
- Neurosurgery
 - Jean Ciurea
 - Alin Rasina
- Technicians
 - Mariana Popa
 - Victoria Raicu

 Funding: UEFISCDI PN-II-ID-PCE-2011-3-0240, PN-III-P4-ID-PCE-2016-0588

Thank You !

Supplementary Information

Spectral properties of spikes and oscillations: Analytical description

Modeling of HFO superimposed with spikes:
 – A Gaussian having a standard deviation σ_{sp}

$$sp(t) = a_{sp}e^{-\frac{t^2}{2\sigma_{sp}^2}}$$

Has as spectrum a Gaussian (centered on the origin):

$$SP(f) = A_{sp}e^{-\frac{f^2}{2\sigma_{fsp}^2}}$$
 where $\sigma_{fsp} = \frac{1}{2\pi\sigma_s}$

Amplitude spectrum

FFT of signal
 Analytical HFO
 Analytical Spike

200

250

HFO $f_0 = 100Hz$ HFO $\Delta f_{FWHM} = 29.4Hz$

800

600

400

200

0

50

100

Frequency (Hz)

150

Amplitude (a.u.)

Faster spike, broader spectrum

- A HFO having a frequency f_0 having as envelope a Gaussian:

$$hfo(t) = \underbrace{a_{hfo}e^{-\frac{t^2}{2\sigma_{hfo}^2}}}_{envelope} \cdot \underbrace{\cos(2\pi f_0 \cdot t)}_{oscillation}$$

• Has as spectrum a Gaussian centered on the frequency f_0 :

where

$$HFO(f) = A_{hfo}e^{-\frac{(f-f_0)^2}{2\sigma_{f_{hfo}}^2}}$$

$$\sigma_{f_{hfo}} = \frac{1}{2\pi\sigma_{hfo}}$$

(Modulation theorem in Fourier analysis)

Shorter HFO, broader spectrum

Why factor in HFO duration?

Time-frequency (TF) representations use particular time windows for analysis that may not be appropriate for visualizing and detecting HFOs Example: using Morlet wavelets for TF maps - developed for geoseismic signals

Median $\Delta t = 126$ ms

Using "standard" methods for TF maps

- Morlet wavelet is a particular type of Gabor function with a $nco = \omega\sigma = 2\pi f\sigma$ factor of 5 (number of oscillations) – poor frequency resolution
- Using Gabor functions with larger *nco* (or better *Q*-factor) would allow better frequency localization

HFO 102 Hz 126 msec

Matched filters – widely used in signal processing, including EEG:

Hector Mesa, Adapted Wavelets for Pattern Detection, Progress in Pattern Recognition, Image Analysis and Applications, Volume 3773, Lecture Notes in Computer Science pp 933-944

Fig. 2. (a)An EEG fragment and its CWT with the spike-wave complex adapted wavelet. (b)A zoom between .9 and 1.2s shows the existence of three local maxima of the wavelet energy around a spike-wave complex.

- Using a Gabor function with a larger $nco \ge$ 35 improves frequency resolution at the expense of poorer time resolution.
- Q: how do we combine the better time resolution at lower *nco* with better time frequency at higher *nco*?

- Combining information with good time localization and frequency resolution
- Maximum Intensity Projection (MIP)?

Combining information with good time localization and frequency resolution

Epileptiform discharges Repetitive inter-ictal spikes + HFO on SEEG macrocontacts

Repetitive inter-ictal spikes + HFO on SEEG macrocontacts

Morlet

Multi-Q MinIP

Topographic mapping of IWER

50Hz Stimulation Artifact

Epileptogenicity Biomarkers

Percentage of positive contacts included in the resection.

Patient	Engel Score	Inbound DR	Inbound HFO	Inbound DR or HFO	Inbound DR and HFO	Outbound DR	Outbound HFO	Outbound DR or HFO	Outbound DR and HFO
1	I	28.13%	28.89%	28.13%	28.89%	31.82%	32.14%	30.00%	35.00%
2	I	18.37%	27.27%	20.37%	23.53%	27.27%	19.23%	19.23%	27.27%
3	III	28.57%	0.00%	10.53%	0.00%	0.00%	21.88%	20.59%	0.00%
4	III	21.43%	47.62%	38.71%	25.00%	0.00%	16.67%	16.67%	0.00%
5	Ι	25.00%	22.73%	21.74%	33.33%	100.00%	28.95%	28.95%	100.00%
6	IV	17.65%	25.00%	25.00%	15.38%	30.00%	38.89%	38.89%	30.00%
7	I	18.18%	22.58%	22.22%	16.67%	33.33%	32.00%	32.00%	33.33%
8	I	0.00%	12.00%	11.54%	0.00%	16.67%	19.23%	18.52%	20.00%
9	Ι	8.00%	7.14%	7.32%	8.33%	40.00%	9.76%	17.78%	25.00%
10	Ι	14.29%	21.43%	20.00%	9.09%	0.00%	28.57%	28.57%	0.00%
11	II	100.00%	16.67%	37.50%	100.00%	0.00%	33.33%	20.00%	-
12	Ι	31.25%	57.14%	33.33%	60.00%	37.14%	40.00%	36.59%	44.44%
13	Ι	7.55%	0.00%	7.55%	0.00%	21.43%	0.00%	18.75%	-
14	I	14.63%	0.00%	14.29%	0.00%	0.00%	0.00%	0.00%	0.00%
15	Ι	36.36%	-	36.36%	-	0.00%	-	0.00%	-
16	Ι	0.00%	25.00%	14.29%	0.00%	0.00%	0.00%	0.00%	0.00%
MEAN		23.09%	20.90%	21.80%	21.35%	21.10%	21.38%	20.41%	24.23%
SD		23.07%	16.41%	10.62%	27.46%	26.28%	13.81%	12.24%	27.91%